Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide.

نویسندگان

  • Folarin Erogbogbo
  • Ken-Tye Yong
  • Rui Hu
  • Wing-Cheung Law
  • Hong Ding
  • Ching-Wen Chang
  • Paras N Prasad
  • Mark T Swihart
چکیده

Luminescent silicon quantum dots (SiQDs) are gaining momentum in bioimaging applications, based on their unique combination of optical properties and biocompatibility. Here, we report the development of a multimodal probe that combines the optical properties of silicon quantum dots with the superparamagnetic properties of iron oxide nanoparticles to create biocompatible magnetofluorescent nanoprobes. Multiple nanoparticles of each type are coencapsulated within the hydrophobic core of biocompatible phospholipid-polyethyleneglycol (DSPE-PEG) micelles. The size distribution and composition of the magnetofluorescent nanoprobes were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Enhanced cellular uptake of these probes in the presence of a magnetic field was demonstrated in vitro. Their luminescence stability in a prostate cancer tumor model microenvironment was demonstrated in vivo. This paves the way for multimodal silicon quantum-dot-based nanoplatforms for a variety of imaging and delivery applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications.

Luminescent imaging agents and MRI contrast agents are desirable components in the rational design of multifunctional nanoconstructs for biological imaging applications. Luminescent biocompatible silicon quantum dots (SiQDs) and gadolinium chelates can be applied for fluorescence microscopy and MRI, respectively. Here, we report the first synthesis of a nanocomplex incorporating SiQDs and gadol...

متن کامل

Methionine-mediated synthesis of magnetic nanoparticles and functionalization with gold quantum dots for theranostic applications

Biocompatible superparamagnetic iron oxide nanoparticles (NPs) through smart chemical functionalization of their surface with fluorescent species, therapeutic proteins, antibiotics, and aptamers offer remarkable potential for diagnosis and therapy of disease sites at their initial stage of growth. Such NPs can be obtained by the creation of proper linkers between magnetic NP and fluorescent or ...

متن کامل

Biosynthesis of luminescent quantum dots in an earthworm.

The synthesis of designer solid-state materials by living organisms is an emerging field in bio-nanotechnology. Key examples include the use of engineered viruses as templates for cobalt oxide (Co(3)O(4)) particles, superparamagnetic cobalt-platinum alloy nanowires and gold-cobalt oxide nanowires for photovoltaic and battery-related applications. Here, we show that the earthworm's metal detoxif...

متن کامل

Quantum dot bioconjugates for ultrasensitive nonisotopic detection.

Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection. In comparison with organic dyes such as rhodamine, this class of luminescent labels is 20 times as bright, 100 times as stable against photobleaching, and one-third as wide in spectral linewidth. These nanometer-sized c...

متن کامل

Magnetofluorescent probe of superparamagnetic iron oxide nanoparticles modified with poly(TMSMA-r-PEGMA-r-Eu(NTA)3(MMA)(TOPO)3).

In this study, hybrid magnetofluorescent structures composed of organic moiety of poly(TMSMA-r-PEGMA) for biomolecules-resistant surfaces and methyl methacrylate for conjugation of europium complex inorganic moiety of magnetic nanoparticles are reported. Lanthanide complex of europium ion with 4,4,4-Trifluoro-1-(2-naphthyl)-1,3-butanedione (NTA) and trioctylphosphine oxide (TOPO)[Eu(NTA)3(TOPO)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 4 9  شماره 

صفحات  -

تاریخ انتشار 2010